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ABSTRACT

The stability and dynamic response of thirteen
rotating space station configurations when subjected to
various applied disturbances were investigated first by
approximate exploratory analyses to determine the
significant configurations and the relative significance
of transient inputs to each configuration. Detailed

analyses of ten selected combinations of configurations
and forcing functions were then carried out in depth
with special attention given to internal mass motions,
docking, angular acceleration, and control forces. In

view of the unique dynamic response problems associated
with the gravitational gradient and structural elasticity,
separate detailed analyses of the cable-connected con-
figuration, the Y- configuration, and the H- configuration
were also conducted.
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1. 0 INTRODUCTION AND SUMMARY

1.1 BACKGROUND

A space station revolving in orbit is subject to numerous small dis-
turbing forces from space environments and operating systems. These
forces are dynamic in origin and are generally transient in nature. In order
to determine the extent of the perturbations, optimize the relations between
light weight and structural strength, exploit the possibilities of control, and
ensure a comfortable living environment from shock and vibration surround-
ings, the dynamic response of the station to these disturbing forces at
different levels of artificial gravity falling within the human factors envelope
(Appendix C) must be fully understood.

The stability and response of various selected configurations of
orbiting space stations subjected to rapidly applied disturbances were
investigated first by approximate exploratory analyses to determine the
significant configurations of space stations and the relative significance of
transient inputs to each configuration. A detailed analysis of ten selected
combinations of configurations and forcing functions was then carried out in
depth. The problem areas to be considered include the internal mass
motions, launch and docking forces, angular acceleration, and control forces.

In view of the unique dynamic response problems of some specific con-
figurations which may not be solved by general studies, complete analyses of
the compartment-cable -counterweight space station, Y-space station, and
H-configuration subjected to the influence of the gravitational gradient,
control forces and elastic effects were conducted separately.

The report is divided into nine sections. Generally, the materials
listed before section six are exploratory analyses and the remaining
sections are detailed analyses.

1. 2 SUMMARY AND RESULTS

1. 2. 1 Configurations

To initiate the study, a number of representative configurations were
selected for exploratory investigation. Two or three compartments (and/or
counterweights) with ratios of length to width of 1:10, spinning about a
common axis interconnected with either compression or tension members,
were considered in the configuration analysis. The radius of rotation from
compartment to the spin axis is generally set at 100 feet. For tension

Manuscript released by authors May 1964 for publication as an 7 Technical Documentary Report.

1



member-connected configurations, cable lengths of 1,000 and 6,000 feet
were used. The configurations which were investigated in the exploratory
analysis are discussed in Section 2.0 of this report.

1.2.2 Disturbances and Forcing Functions

The disturbances that act on the space station are classified as exter-
nal and internal disturbances. In the category of external disturbances, the
gravity gradient is the main consideration in the complete analysis of a
cable-connected space station, because it is essential to establish that the
satellite's motion about its mass center is stable even though a feasible
damper may be required. The docking operation was simulated by an
increase in the total mass and a change in the moments of inertia of the
space station and by a rectangular moment pulse of short duration. The
dynamic cross-coupling created by the internal mass transfer was handled
by treating the moments of inertia as functions of the mass movements with
respect to time. The various inputs were summarized in the form of rec-
tangular, ramp, and sinusoidal functions which in turn were expressed by
the general Fourier's series.

1.2.3 Exploratory Analysis - Stability

It is important that the dynamic properties associated with any given
configuration of a space station be considered in the design. The distribu-
tion of masses relative to the spin axis markedly affects the stabilization
and control problem. It has been observed that a nonrigid satellite which is
spin-stabilized about its axis of minimum moment of inertia will tumble.
The cause is attributed to the dissipation of mechanical energy in the
structure due to internal friction. The minimum energy condition which cor-
responds to the condition of the vehicle spinning about its axis of maximum
moment of inertia represents the only stable state for a rotating, non-rigid
vehicle. However, when the difference between the maximum and inter-
mediate moments of inertia is small when compared to the minimum moment
of inertia, the rotation is less stable. The stability criteria of the various
configurations are fully discussed in Section 4.0 of this report.

1.2.4 Exploratory Analysis - Particular Disturbances

From the viewpoint of the designer, the choice of a space station config-
uration may be based on the rotational stability of the spacecraft and its
response to various disturbing forces. In Section 5. 0, the rigid body angular
response motions of thr representative configurations are investigated. The
motions are obtained by linearizing the Euler's moment equations. The
moments exerted on the space stations are expressed in the form of Fourier
series. Different levels of artificial gravity, with attention tothe human
factors associated with a rotating vehicle, were introduced in analyzing the
configurations. Fifty-two combinations of configurations and forcing functions
have been examined and tabulated for comparison. (See Tables 6 through 11.)
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The human factor considerations associated with rotation are discussed in
Appendix C. From the results, a selection of 10 combinations of configur-

ations and forcing functions were made for further detailed study in

Section 9. 0 of this report.

1. 2. 5 System Vibration Modes

In view of the adaptability of a lumped parameter method to digital com-
puter operations, the method has been developed and applied successfully to
most of the selected configurations. For an elastically stable system, one
may consider that each normal coordinate corresponds to an independent
mode of vibration of the system. In general, any arbitrary motion of the
system may be expressed as a superposition of the motions in the normal
modes. To apply this theory to systems with an infinite number of degrees

of freedom, we begin by seeking the normal modes of vibration. Section 6. 0
is devoted to the calculation of the frequencies of free vibration and mode

shapes of the different configurations.

1. 2. 6 General Analysis of the Motion of an Orbiting Space Station

In a general analysis of the motion of an orbiting space station during a

six-month period or more, it is desirable that the inertial frame of reference
consider, at least, the earth's orbit angle about the sun as a degree of free-
dom. Thus, eight rigid body degrees of freedom and an unlimited number

of elastic degrees of freedom were introduced in the system. The formula-
tions of the kinetic energy and gravitational potential were carried out in
detail. The analysis is applied to an idealized cable-counterweight space
station. Motion analysis was restricted to the direction of the cable, and
gravitational forces up to the second order were included in the study of

small perturbations from the steady state. By linearizing the equations
of motion, i.e. retaining only first order terms in the perturbations, a

stable orbit was achieved and the small perturbations on that orbit due to the
gravity gradient were determined. In this preliminary analysis the change in

angular momentum due to elastic deformations was neglected and the linear-
ized equations for the elastic degrees of freedom were solved separately.
This leads to an unstable root of the elastic equations. It was thus established
that the coupled non-linear equations should be solved simultaneously in the

subsequent detailed analyses.

1. 2. 7 Planar Motion of Orbiting Space Stations

Because of the unique dynamic response problems of the compartment-

cable- counterweight configuration, the Y- configuration, and the H-configuration
of space stations when subjected to the influence of the gravitational gradient

and elastic effects, separate detailed analyses of the planar motions were
conducted in Section 8. 0. The important feature in this analysis is the

3



inclusion of the coupling effect between the rotational motion and the orbital
motion. The effects of flexibility and vibrational motion are also included in
the formulation of the equations of motion. Under the assumption of a
spherical gravitational potential and the neglect of dissipation forces, thecomputer solution of the equations of planar motion of the compartment-
cable-counterweight configuration shows that the circular orbital motion of
the cable system is stable, and that the spinning configuration has neutral
elastic stability in the same sense that a simple spring-mass system has
neutral elastic stability and oscillates with some finite amplitude in response
to an externally applied periodic force when the period is different than the
natural period of the system. The introduction of viscous damping terms
representing a small percentage of the critical factor resulted in highly
damped oscillations indicating a high sensitivity to damping forces. The
results confirm those of other researchers although the interpretation of
the results differs slightly.

1. 2. 8 Spin Dynamics of Rotating Space Stations

Normal operations of a rotating space station present several types of
disturbances which affect its orientation. In Section 9. 0, the rigid body
angular motion of ten combinations of configurations and forcing functions
were investigated in detail. To facilitate the study of the response of the
space station to a time variant mass distribution, to an angular acceleration,
and to proportional control forces, the Euler's moment equation with
variable moments and products of inertia was solved by a fourth-order
Runge-Kutta numerical integration procedure.

1. 3 CONCLUSIONS AND RECOMMENDATIONS

It is extremely important that in any analysis of an orbiting elastic
vehicle that (1) orders of magnitude of forces be balanced separately (only
when the relationships of forces of equal order of magnitude are established
can their effects on the motion of the vehicle be determined accurately);
(2) initial conditions be consistent with the initial assumptions (i. e. , if
small amplitudes of elastic deformation are assumed in the derivation at
least the initial response amplitudes should be small); (3) care be taken
to differentiate between types of instability (i. e. , unstable rotational
motion may describe tumbling of the vehicle, an unstable orbit has a
specific meaning, and unstable elastic deformations may exist under con-
ditions of stable spin and a stable orbit).

The results of this study indicate: (1) that elastic deformations caused
by gravity gradients will not cause an otherwise stable orbit to become
unstable, (2) a space station with the intermediate moment of inertia very
close to the largest moment of inertia will, if disturbed, eventually spin
with large amplitudes of wobble - elastic deformations will result in damped
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